Archive for April, 2020

Books to read to become a palaeontologist

Despite (or because of) writing a long piece on ‘how to become a palaeontologist’, I still get loads of questions from people who want help and advice about getting into this field. While I encouraged people to read a lot, I didn’t get too specific since everyone has different backgrounds and areas they want to get into, and books (especially on dinosaurs) come out in a huge flurry and tend to date quickly. However, a recent query and some pondering led me to realise that actually there’s a core group of books I would recommend which is likely to be a useful starting point years or even decades from now (and indeed, many of the books are already decades old).

What may surprise people is that basically there’s no dinosaurs on the list and not really any palaeontology. This is because people who want to learn about palaeontology, whether just because they are interested, or because they have an active plan to becomes one, tend to get really obsessed with facts. Learning lists of formations and dates and faunal lists and how many teeth a species have are useful, but this use is limited. This stuff constantly changes and gets out of date and if you don’t know it or forget it, you can always look up the answer. What is infinitely more useful, is understanding – a knowledge of the principles at play and the fundamental basis of how organisms and systems work, and how we obtain and apply that knowledge.

In other words, reading dinosaurs books is a poor way to learn about palaeontology (in some ways, I’m obviously not suggesting someone who wants to work on dinosaurs shouldn’t read books on dinosaurs or learn about them). So with that in mind, here’s my list of ten books to read to get into palaeontology. I should stress that this is very far from exhaustive and it’s skewed to books in areas that I am interested in, and as a result there’s not a lot of geology in there. Still, at least ¾ of this list will be useful for anyone wanting to embark on a palaeontological career or just getting a better understanding of the field, or for that matter almost any are of biology.

These are presented in a rough order in which to read them where I think they would most benefit and build on each other, though equally that is far from important and it wouldn’t really be an issue to read them in a random order.

 

  1. Charles Darwin – Origin of Species

If I’m honest, it’s pretty tedious and repetitive as a book to read (the Victorian style of popular science writing doesn’t necessarily hold up too well 150 years later) but it can hardly be avoided. It’s so fundamental to the basis of modern evolutionary theory as well as being so important historically that even if it’s a slog to get through, any wannabe biologist of any stripe should read it.

  1. Richard Dawkins – Selfish Gene

A modern classic and important to understand the role and important of genetics in evolution. As such it’s an important successor to The Origin and is also something of a period piece for the state of biology and evolution when it was written.

  1. Carl Zimmer – Evolution

A few years old now, but an excellent introduction to modern evolutionary theory and its foundations and a very good place to start for anyone wanting to learn anything in depth about biology.

  1. Bill Bryson – A Short History of Nearly Everything

For me the best ever popular science book. This is a brilliant grounding in both the basics of science (geology, physics, chemistry and biology) as told through the history of those fields with input from a huge number of respected authorities in their fields. I reread it every year or so.

  1. Steven Levitt and Stephen Dubner – Freakonomics

Something of a wildcard this, it’s not without issues, but it’s a very entertaining read and it shows well that with careful thought you can make the most of almost any dataset to say something meaningful about a subject. With data at a real premium in palaeontology, a book on creative analysis (which is also a lot of fun) from limited informationis something rather useful.

  1. Ben Goldacre – Bad Science

All the examples might be medical, but this really is an exemplary book on how experiments should be set up and how things should be analysed. It’s a wonderfully easy read and while it’s not about statistics per se, it does really get to the root of preparing and planning your work and understanding what you can and cannot grasp from data, as well as how people mishandle and misinterpret results.

  1. Armand Marie Leroi – Mutants

An absolute favourite of mine and the book that got me to be interested in, and understand, development. A wonderfully written book and deeply engrossing and linking together human biology, development, genetics and history.

  1. Paul Colinvaux – Why Big, Fierce Animals are Rare

This book is slowly aging but as an introduction to population ecology it’s still excellent and provides an excellent foundation for understanding so much of the pressures that influence organisms.

  1. Matt Ridley – The Red Queen

A brilliant and perennially popular book on sex and sexual selection and its importance in shaping evolution, diversity anatomy and behaviours. A must read if you want to understand a selective driver than can be even more powerful than natural selection.

  1. Neil Shubin – Your Inner Fish

The closes this list probably comes to palaeontology, this book explores the world of EvoDevo and the increasingly important role palaeontology plays in other branches of biology to understand evolution and deep time. It also covers some major palaeontological discoveries and advancements in the field so is rather a 2 for 1 in that sense.

 

And an extra bonus number 11 that is actually (a bit) on dinosaurs

  1. Deborah Cadbury – The Dinosaur Hunters

Wonderfully written book on the story of the origins of palaeontology as a science and featuring Owen, Mantell, Buckland, Anning and plenty of others. This is pretty much a historical book, but having an appreciation for the origins of the field and science of the time is important and useful to know and this is a very compelling read.

Can we make pterosaur planes yet?

Short answer, no, longer answer, maybe one day but there is at least some cool potential here. That’s the basic gist of a new paper I have out today with Liz Martin-Silverstone and Mike Habib on flight in the fossil record and its implications for aircraft design.

Back in the earliest days of human-powered flight there was an inevitable draw to birds for inspiration as heavier than air fliers, and there’s more than enough videos of cranky machines flopping around on their wings failing to get off the ground if you are into that sort of thing. Aerospace technology has moved on though and bird-like flying machines (called ornithopters) do now exist. More and more technology takes inspiration from living organisms (biomemetics, bioinspired tech) and when it comes to flight, so often at the forefront of engineering, this has included all manner of bits of bird and feather-like features. Bats have played a lesser role too and insects are increasingly looked at since now aircraft do not have to have pilots and remote controlled craft, drones, autonomous vehicles (and plenty of other names and acronyms) are increasing in number and diversifying in form.

Amidst all of this, the fossil record goes almost unnoticed. Flying organisms have all manner of adaptations for weight reduction, streamlining, ways of manipulating lift, drag and control and of structural support with unusual forces and combining issues like take-off and landing on usual surfaces with having to actually fly. They provide known working models that can be directly copies and mimicked, or at least used as a starting point to investigate ideas. Given the plethora of flying animals in the fossil record (both gliders and powered fliers) that have no living analogues, these would seem an excellent place to seek out new technological innovations and ideas and the idea of this paper is to try and trigger some interest in this. True, people have looked at pterosaur flight, though mostly to see how pterosaurs might have flown. Only a very limited amount of work has been done looking at these as possible aircraft models and even then it’s been holistic with no real look at the details of wing construction or control. And this is just one clade and ignores things like Yi, with its combination of membranes and feathers, Microraptor with its multiple control surfaces, Sharovipteryx the delta-winged glider and others.

The paper is short though and writing such a piece that is trying to work for engineers with potentially little knowledge of biology, biomechanicists with little knowledge of palaeontology and palaeontologists with little knowledge of either. As a result, it’s rather superficial in terms of its treatment of many ideas and concepts despite a vast amount of cited literature (we had to get dispensation for the editor to include so many and the referees were still unhappy and wanted more) but it does hopefully provide some real information and ideas for these three groups of researchers to come together and make use of the palaeontological resources at their disposal.

So while we might not see any pterosaur-based drones around anytime soon (or indeed ever) we hopefully will see considerably more interest in flying animals in the fossil record on all sides and this certainly has the potential to feed back into new designs. I’d obviously love to see an azhdarchid drone that can walk, run, launch and fly but even seeing something like an anctinofibril-based system of wing warping or pteroid-supported propatagium would be super cool. Stanger bits of the biological world have been looked at for engineering and hopefully various fossils will become a part of this in the near future.

 

Martin-Silverstone, E., Habib, M.B., & Hone, D.W.E. 2020. Volant fossil vertebrates: potential for bioinspired flight technology. Trends in Ecology and Evolution.

Note: this has gone live a week earlier than we were told to expect and the version out there is currently the uncorrected proof, and while we didn’t make any substantive changes, a better version of this should follow.


@Dave_Hone on Twitter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 532 other followers