Character reversal

“An organism is unable to return, even partially, to a previous stage already realised in the ranks of its ancestors.” Louis Dollo.

The idea that once lost, an organism could never again re-evolve a given trait was quite prominent in the early 20th century but has now largely passed on into history. It may seem obvious now that this was a questionable assumption, but the fossil record was much more poorly known then (as indeed were the mechanisms of inheritance and variation) and the differences between many major clades were apparently much greater owing to the (then) missing intermediates (though of course something like Archaeopteryx was already much celebrated). While it does even now seem unlikely that feathers could evolve twice independently (though of course it’s just possible) the real reason that a character might vanish and then crop up again lies in genetics.

A simple point mutation (that is, a change to just a single base pair in the genome) could, potentially, eliminate an entire set of characters from appearing (like say the development of limbs or feathers) in the organism. This could then be reversed in a later generation with another single point mutation that restores the original state of the genome (assuming it has not mutated or altered further in the meantime). In practice of course, both scenarios are unlikely and the complete disappearance or reappearance of a character in a single generation are probably effectively impossible. In general the loss or gain of a feature (especially across a clade as opposed to a single organism, a featherless hawk might hatch from an egg, but that doesn’t make the species featherless) is slow and steady. More and more teeth might be evolved in the jaw over generations until a descendant species has far more than the ancestor, but the number is unlikely to double immediately in one or a few select individuals and then spread very rapidly across the population. Since a great many (and probably most) traits are controlled by multiple genes and genetic and developmental pathways then there are of course a multitude of ways of say adding more teeth and indeed there are many ways of getting rid of them too.

Which returns us a little haphazardly to the original point of this post – character reversals, which are basically characters that seem to have gone from one condition to another during their evolution and later returned to the original state. Typically these reversals refer to the small and detailed characters that are used in systematic and phylogenetic work but can also relate to whole complexes. A good example would be the manual claws seen on the fingers of young hoatzin.

Clearly ancestral birds had clawed fingers (like Archaeopteryx for starters) and these were later lost as exemplified by, well, virtually every living bird and quite a few fossil ones. None of the other relatives or apparent ancestors of the hoatzin have these claws, so there is now way they have been hanging around for a long time unnoticed. Thus their return in these birds is a reversal of this character as it has been reacquired. Actually, ‘reacquired’ is perhaps not the best term to use, since the ability to produce claws was doubtless floating around unused in the genes of these animals. A better term would therefore be that these claws have been ‘re-expressed’.

The short message is though that these characters can and do change (evolution is, of course, not random but selected). You can see characters oscillating even in some circumstances such at the studies done on beak shapes in Darwin’s finches where successive droughts or wet seasons can prompt beaks to switch from bigger to smaller morphs and back again and back again over just a few generations as conditions favour one beak shape or the other.

8 Responses to “Character reversal”


  1. 1 Mike Taylor 08/10/2010 at 9:53 am

    “Clearly ancestral birds had clawed fingers (like Archaeopteryx for starters) and these were later lost as exemplified by, well, virtually every living bird and quite a few fossil ones.”

    Not according to Darren: http://scienceblogs.com/tetrapodzoology/2010/06/clubs_spurs_spikes_and_claws.php

    “While it’s well known that the fossil birds of the Mesozoic often had clawed hands, it doesn’t seem to be widely known that hand claws are widespread and in fact wholly normal in extant birds. They’re not an anachronism unique to the Hoatzin Opisthocomus hoazin.”

    • 2 David Hone 08/10/2010 at 10:42 am

      Ok, maybe a minor exaggeration. But given the number of living birds (10K + species) the fact that even a few hundred have claws is still a minor number. And These are (as I recall he said not looking it up) all secondarily reacquired, not retained.

  2. 3 Darren Naish 08/10/2010 at 12:50 pm

    Nope, manual claws in birds have been retained throughout the whole of bird history – no reason to think that they’re ‘reacquired’. It’s true that passerines (which account for c. 59% of extant bird diversity) seem to lack manual claws entirely, but otherwise they are essentially ubiquitous.

  3. 5 Mark Mancini 08/10/2010 at 8:10 pm

    Perhaps this particular quandary should have been presented to “Ask A Biologist”, but on a similar note to the theme of this particular post, I’ve been confused by an assertion often made by paleontologists who study the transition of land-based tetrapods into sea-dwelling descendants (cetaceans, mosasaurs, etc.) which maintains that this process is, for all intents and purposes, “irreversable”. For instance, they argue, dolphins are incapable of one day returning to the land from whence they came due to the methodology through which limbs evolved. What evidence exists to support this claim?

    • 6 David Hone 08/10/2010 at 9:33 pm

      None that I know of. I can see that some things are *probably* irreversible or perhaps effectively so (i.e. very, very, very, very unlikely). Snakes for example have been snakes for so long that vestigial limbs aside in some, their genes for making legs are probably long since degraded. It would take huge selective pressure and more than a bit of ‘luck’ for those to come back.They might have to effectively re-evolve from scratch and that is probably one hell of a push.

      • 7 neda 24/02/2014 at 12:24 pm

        please tell me another examples in animals (about Character reversal )

        i am a student of entomology. and i need the answer of my question for my seminar .

        thanks


  1. 1 Loss and systematics « Dave Hone's Archosaur Musings Trackback on 19/10/2010 at 5:01 pm
Comments are currently closed.



@Dave_Hone on Twitter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 456 other followers


%d bloggers like this: